Interpretation of the Moon Probing Signals During Landing Using Laser Scanning Systems

  • Igor Nikolaevich Kulikov Научно-исследовательский испытательный центр подготовки космонавтов им. Ю.А. Гагарина
  • Boris Ivanovich Kryuchkov Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А.Гагарина
Ключевые слова: Surface sounding signals, laser scanning, lidar, digital terrain model, lunar landing


The paper deals with the issues of determining the current spatial position of the landing space module relative to the surface of the Moon. The novelty and relevance of the proposal is to implement the technology of a scanning lidar or a laser scanner as a spatial data source. Currently, this innovative technology finds wide and effective application in various spheres on Earth. The use of a matrix-type laser scanner is depended on the feature of the trajectory of the space module at the final stage of landing, which has a long vertical section.

The high spatial resolution of laser shooting, the speed of obtaining and using digital information and other characteristics of the scanner allow us to offer it as a basic element of the lunar landing module’s vision system. The prompt receiving of the planet surface sounding signals in the format of digital terrain models with a given spatial resolution based on laser shooting is the basis for the formation of a safe pre-landing maneuver and landing of a space module on the surface of the Moon. The proposed method is of interest both for using manned and unmanned space technology.


1. The strategy of the Russian manned cosmonautics until 2035. – GC "Roscosmos", 2022. – 35 p.
2. The concept of Russian manned cosmonautics. – GC "Roscosmos", 2022. – 18 p.
3. The Russian Lunar program. – URL:
https://руни.рф/index.php/Российская_лунная_программа (accessed date: 28. 04. 2023).
4. Russian Lunar exploration Program. – URL:
programma-osvoeniya-luny.html (accessed: 04/28/2023)
5. Е.S. Gordienko, А.V. Simonov, P.А. Khudorozhkov. Ballistic Planning of Missions for the
Delivery of Lunar Soil Samples to the Earth // Engineering Journal: Science and
Innovations, No3, 2020. P. 1–22.
6. Spacecraft Motion Control While Landing on the Moon Surface. B.I. Zhukov, V.N.
Likhachyov, P.Е. Rozin, Yu.G. Sikharulidze, А.G. Tuchin, D.А. Tuchin. // Bulletin of
R&PA named after S.A. Lavochkin No4 (54), 2021. P. 22–30.
7. Е.А. Mikrin. Scientific and Technical Problems of Implementing the “Manned Space
Systems and Complexes” Project // Space Engineering and Technologies, No3 (26) 2019. P. 5–19.
8. Satellite Navigation of Circulunar Spacecraft and Objects on the Moon Surface. Е.А. Mikrin, М.V. Mikhailov, I.V. Orlovsky, S.N. Rozhkov, I.А. Krasnopolsky. // Gyroscopy and Navigation, Vol. 27, No 1 (104), 2019. P. 22–32.
9. Gordienko, E.S., Ivashkin, V.V., and Simonov, A.V., Analyzing stability of orbits of artificial satellites of the moon and choosing the configuration of the lunar navigation satellite system, Vestnik NPO im. S.A. Lavochkina, 2016, no. 4 (34), pp. 40–54.
10. On the possibility of using astronomical navigation methods to ensure manned flights to the Moon. A.I. Kondrat, A.A. Mitina, G.D. Oreshkin, A.I. Shurov / Proceedings of the Ninth International Aerospace Congress IAC'18 dedicated to the 30th anniversary of the successful flight of the Buran orbiter. Abstracts of reports of Lomonosov Moscow State University (August 28-31, 2018. Moscow, Russia). pp. 428-429.
11. Where to land: which landing sites on the moon were chosen for NASA astronauts. – URL: dlya-astronavtov-nasa / (accessed: 04/28/2023)
12. Ivanov M.A., Abdrakhimov A.M., Bazilevsky A.T., etc. The geological context of the potential landing site of the Luna-Globe expedition. - Astronomical Bulletin. 2014. vol. 48, No. 6. pp. 423-435.
13. Ivanov M.A., Marov M.Ya., Bazilevsky A.T. et al. Boguslavsky crater on the Moon: choosing a landing site for the LUNA-GLOBE mission lander. - Bulletin of FSUE NPO named after S.A. Lavochkin, 2017. No.2. pp. 44-51.
14. B.S. Zhukov, I.V. Polyansky, S.N. Zhukov. Autonomous Optical Navigation in Lunar Orbit and While Lunar Landing Using a Superwide-Angle Camera. // Current Problems of Remote Sounding of the Earth from Space. 2017. Vol. 14. No 2. P. 24–35.
15. Huang Yichong. Optimal control of the maneuver of the lunar vehicle to the selected soft landing point between hovers. - Proceedings of MAI, 2016, No. 4: - URL: (accessed: 04/28/2023)
16. Shirenin A.M., Mazurova E.M., Bagrov A.V. Construction of a high-precision selenodesic coordinate system on the physical surface of the Moon using LED beacons located on its surface // Space Research. 2016. vol. 54, No. 6. pp. 493-498.
17. Bagrov A.V., Dmitriev A.O., Leonov V.A. and others. Global positioning system for the Moon based on active light beacons // Bulletin of S.A. Lavochkin NPO. 2017. No. 4. pp. 5- 10.
18. Bobronnikov V.T., Kozorez D.A., Krasilshchikov M.N. et al. Statistical dynamics and optimization of aircraft control. - M.: Alliance, 2013. - 468 p.
19. The magazine "All about space". The Apollo 15 mission. – URL: (accessed: 04/28/2023)
20. B.I. Kryuchkov, B.V. Burdin, A.V. Solodnikov. The experience of the USSR and the USA in preparing cosmonauts and astronauts for landing on the Moon // Manned space flights, No1 (34). - 2020. Pp. 86-103.
21. "Luna-15". – URL: (accessed: 04/28/2023)
22. Kazmerchuk P.V., Martynov M.B., Moskatinev I.V., etc. The LUNA-25 spacecraft is the basis for new lunar exploration. - Bulletin of S.A. Lavochkin FSUE NPO, 2016. No.4. pp. 9 — 19.
23. Compton, William David Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions. - p.139. NASA (1989)
24. Lindsay, Hamish Apollo 11. The First Men Jn The Moon. A Tribute to Honeysuckle Greek Tracking Station. – URL: / hl_apollo11.html (accessed: 04/28/2023)
25. Komissarov A.V. Theory and technology of laser scanning for spatial modeling of territories. Dissertation for the degree of Doctor of Technical Sciences // Komissarov Alexander Vladimirovich. Siberian State University of Geosystems and Technologies (SSUGiT). Novosibirsk, 2015 – 278 p.
26. Laser location of the earth and forests: A textbook / Medvedev E.M., Danilin I.M., Melnikov S.R.− 2nd ed., reprint. and additional − M.: Geoskosmos; Krasnoyarsk: V. N. Sukachev Institute of Forest SB RAS, 2007. − 230 p.
27. A. Ulrich. Information content of the point cloud during aerial laser scanning. - URL: http://лазер.рф/2019/11/28/14842 / (accessed: 04/28/2023)
28. Ground laser scanning: monograph // V.A. Seredovich et al. - Novosibirsk: SGGA, 2009. – 261 p.
29. Kulikov I.N. Laser scanning devices and their use in promising Lunar missions // Manned flights into space, No. 4 - 2021. pp. 57-74.
30. Starovoitov E.I., Zubov N.E. The use of a laser altimeter as a backup meter when approaching spacecraft in lunar orbit. - Space Engineering and Technologies, 2015, No. 3(10), pp. 60-67.
31. Russian space-based lidar of the BALKANS. Zuev V.E., Balin Yu.S., Tikhomirov A.A.,
Znamensky I.V., Melnikov V.E. // Space science and technology. No.3 (1), 1997, pp. 16-25.
32. Baturin Yu.M., Kryuchkov B.I., Leonov A.V. Virtual 3D modeling of real PKCS in the interests of historical and technical research and preservation of scientific and technical
information about objects. // Manned space flights. No. 3 (28), 2018, pp. 97 – 116.
33. Laser on the ISS to combat space debris. - URL:
lazer-kosmicheskiy-musor.html (accessed: 04/28/2023)
34. Laser communication in space. - URL:
communication_in_space (accessed: 04/28/2023)
35. Laser weapons in space. Features of operation and technical problems. - URL:
tehnicheskie-problemy.html (accessed: 04/28/2023)
36. Russian light in space (Laser rangefinders). - URL:
(accessed: 04/28/2023)
37. The choice of lasers to increase the range of onboard location systems of spacecraft.
Starovoitov E. I., Savchuk D. V., Zubov N. E. // Scientific edition of Bauman Moscow State Technical University, issue No. 08, 2013. - URL: lazerov-dlya-uvelicheniya-dalnosti-bortovyh-lokatsionnyh-sistem-kosmicheskih-apparatov (accessed: 04/28/2023)
38. Lidar in space. - URL: 2 / (accessed: 04/28/2023)
39. The Perseverance rover scans the rocks of Mars with a "singing laser". You can listen to it. - URL: https:// / (accessed: 04/28/2023)
40. Flash Lidar performance with real-time image enhancement algorithms to prevent landing hazards. Farzin Amzajerdyan, Paul Brewster, Byron Meadows, Rafia Haq. NASA Langley Research Center, Hampton, Virginia 23681, USA. 2015 - 14 p.
41. Lidar ZENMUSE L1. – URL: (accessed: 04/28/2023)
42. Kryuchkov B.I., Kulikov I.N., Burdin B.V. On information support of the crew's actions
using a scanning lidar during the landing of a manned lunar module // In the book: Manned flights into space. Materials of the XIV International Scientific and Practical conference of the FSBI "Research Institute of the Central Research Institute named after Yu.A. Gagarin", November 2021. pp. 20-22.
43. H. Yichong. Motion control of a spacecraft making a soft landing on the moon according to
the hovering scheme. Huang Yichong. Moscow Aviation Institute (National Research
University), 2018.- 133 p.
44. A.E. Potter, T.H. Morgan (1988). Discovery of Sodium and Potassium Vapor in the
Atmosphere of the Moon Archive copy dated June 21, 2008 on Wayback Machine Science 241 p. – URL: (accessed: 04/28/2023)
45. V.D. Krotikov, V.S. Troitsky. Radio emission and the nature of the Moon. – URL: (accessed: 04/28/2023)
46. The use of laser (optical) communication in space on Earth. – URL: (accessed: 04/28/2023)
47. Novakovsky B.A., Permyakov R.V. Complex geoinformation and photogrammetric modeling of relief: Textbook. – M.: Publishing House of MIIGAiK, 2019 – 175 p.
48. Using GRID and TIN for analysis and modeling of spatial objects, processes and phenomena. – URL: (accessed: 04/28/2023)
49. PHOTOMOD digital photogrammetric system. Version 7.0. User Manual. Creation of a digital relief model. -M.: Publishing house "JSC firm "Rakurs", 2020 - 301 p.
50. Digital relief model by tin. – URL: (accessed: 04/28/2023)
51. GR740 Next Generation Microprocessor Flight Models. – URL: %20Presentation%20-%20GR740.pdf (accessed: 04/28/2023)
52. Pavel Osipenko. Microprocessors for space applications. – URL: (accessed: 04/28/2023)
53. High-performance Space Computing (HPSC). – URL: (accessed: 04/28/2023)
Как цитировать
Kulikov, Igor, и Boris Kryuchkov. 2023. Interpretation of the Moon Probing Signals During Landing Using Laser Scanning Systems. Геоконтекст 11 (1), 5-16.

Наиболее читаемые статьи этого автора (авторов)

Особенность: этот модуль требует, что бы был включен хотя бы один модуль статистики/отчетов. Если ваши модули статистики возвращают больше одной метрики, то пожалуйста также выберите главную метрику на странице настроек сайта администратором и/или на страницах настройки управляющего журналом.